
Deploying an Application on AWS ECS with
 ECR and Docker

Step1: Create a Containerfile

1. Create Dockerfile (Containerfile):
 Create a Dockerfile with the following content.

Step 2: Configure AWS CLI

1. Install AWS CLI on KillerCoda (Ubuntu Linux):

 To install the AWS CLI, run the following commands.
curl "https://awscli.amazonaws.com/awscli-exe-linux-
x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install

Ajinkya Kale

2. Create IAM Policy for ECR Access:

 First, create an IAM policy that allows necessary
 permissions for Amazon ECR.

 Go to AWS console, search for IAM.

 In IAM Dashboard, click on Policies.
 Click on Create policy.

 Click on JSON.

 Then use the following JSON code for the IAM user policy
 to provide Amazon ECR permissions for creating
 epositories and pushing images.

 Then click on Next.
 Enter name for your policy.

 Click on Create policy.

Policy created successfully!!

3. Attach Policy to IAM User and create IAM user:

 Go to the IAM Management Console.
 Navigate to Users in the left-hand side.
 Click on Create user.
 Specify your user's name.

 Under Set permissions, select Attach policies
 directly and select the policy created (i.e AWS-ECR-Task-
 Policy).

 Then click Next.
 Review and create, click on Create user

4. Create Access Key for IAM User:

 Still on the IAM user detail page:
 Under the "Security credentials" tab, click "Create

 access key".

 Then you will see Access Key ID and Secret Access Key.
 Keep the Access ID and key safe.

Ajinkya Kale

5. Configure AWS Credentials:
 Configure AWS credentials using the aws configure

 command.
 Provide your AWS Access Key ID, Secret Access Key, AWS

 Region, and output format as JSON

Step 3: Create an ECR Repository

 Use the AWS services search bar and search for ECR

1. Navigate to Amazon ECR:

2. Create a New Repository:
 In the Amazon ECR console, click on Create

3. Configure Repository Settings:

 Enter a unique name for your repository (e.g., my-ecr-
 repo).

 Choose visibility settings (Private)

 click the Create repository button.

Ajinkya Kale

4. Repository Created:
 repository has been created successfully!!

Step5: Push Docker Image to ECR
1. Push commands for my-ecr-repo:

 Click on Repository name.
 Then Click on "View push commands".

Ajinkya Kale

 By following below steps, you can successfully push
 your Docker image to Amazon ECR and make it available
 for use in ECS

 Run the following commands one by one.

Ajinkya Kale

1. Authenticate Docker to ECR

2. Build Docker Image

3. Tag Docker Image

4. Push Docker Image to ECR

2. Push command for my-ecr-repo:

3. List Images in ECR Repository:

 Click on the refresh button to verify that the Docker image
 has been uploaded to the ECR repository .

Step 4: Create ECS

 Go to the AWS Management Console and search for ECS.

Ajinkya Kale

2. Create Task Definition:

 Click on Create new task definition.

1. Create ECS Cluster:

 Enter name for your cluster
 Under the Infrastructure, choose "AWS Fargate".
 Click on Create.zz

Ajinkya Kale

 Under task definition family enter name for your
 task.

 Choose FARGATE launch type.

3. Container:

 Name of container (web-server)
 Image URL: Copy the URI from the Repository that we

 created earlier
 Essential Container (Yes)
 Port Mapping Container (Port 80),
 Port Name (httpd)

 Then click on Create

4. Creating ECS Service:

 Go back to the cluster we created.
 Scroll down and click Create under Services.

 Under the Compute options menu. Select Capacity
 provider strategy.

 Select FARGATE as the capacity provider.

 Under Deployment configuration, choose Task.
 In Task definition Select the created task definition,

 (i.e., ECR-httpd)

Ajinkya Kale

 Under Networking, click on Create new security group

 Create a new security group with inbound rule for HTTP (80)

 Then click on Create.

5. Access HTTPD Page:

 Click on Task, that we created.

Ajinkya Kale

 Under Configuration, click on open address.
 Open the address in a web browser to access the

 HTTPD page.

By following these steps, you will have built a Docker image
with Apache httpd and a custom index page, pushed it to
Amazon ECR, and deployed it as a containerized service on
Amazon ECS using a task definition.

Ajinkya Kale

	1 - Slide1
	2 - Slide2
	3 - Slide3
	4 - Slide4
	5 - Slide5
	6 - Slide6
	7 - Slide7
	8 - Slide8
	9 - Slide9
	10 - Slide10
	11 - Slide11
	12 - Slide12
	13 - Slide13
	14 - Slide14
	15 - Slide15
	16 - Slide16
	17 - Slide17
	18 - Slide18
	19 - Slide19

